The introduced notion of locally-periodic two-scale convergence allows toaverage a wider range of microstructures, compared to the periodic one. Thecompactness theorem for the locally-periodic two-scale convergence and thecharacterisation of the limit for a sequence bounded in $H^1(\Omega)$ areproven. The underlying analysis comprises the approximation of functions, whichperiodicity with respect to the fast variable depends on the slow variable, bylocally-periodic functions, periodic in subdomains smaller than the considereddomain, but larger than the size of microscopic structures. The developedtheory is applied to derive macroscopic equations for a linear elasticityproblem defined in domains with plywood structures.
展开▼
机译:与周期性的相比,引入的局部周期性的两尺度收敛的概念允许平均更广泛的微观结构。证明了局部周期两尺度收敛的紧性定理和以$ H ^ 1(\ Omega)$为边界的序列的极限的特征。基础分析包括函数的近似值,相对于快速变量的周期性取决于慢速变量,即局部周期性函数,在小于考虑范围但大于微观结构尺寸的子域中周期性变化。该发展的理论被用于导出在胶合板结构域中定义的线性弹性问题的宏观方程。
展开▼